Visualizing set-typed data

Chen He

Slides acknowledgements: Luana Micallef, and Miriah Meyer (Univ. Utah)

What are set-typed data?

Data items are often grouped into sets based on specific properties.

Data abstraction: Set-typed data

Set theory: Set relations

Set theory: Set operations

Set theory: Set operations

Set theory: Set operations

Venn diagrams

Show all possible set relations.

Venn diagrams

Get messy fast.

Euler diagrams

Only show existing set relations.

٧

Ν

Ν

Ε

U

Ε

R

Euler diagrams

Misunderstood.

Maybe this Venn Diagram will explain this better :

Euler diagrams

Only show existing set relations.

Euler diagram variants

Sets in rectangular shapes.

Split sets with intersections.

Improve readability of set intersections by **minimizing the intersections of set regions' boundaries**.

Euler diagram variants

Sets in rectangular shapes.

Euler diagram variants

Duplicate elements belonging to multiple sets.

Overlays

Augment set memberships over the elements in an existing visualization.

Overlays: Bubble Sets

Overlay a set membership relation on top of a primary data relation.

Use line contours.

Collins, C., Penn, G. and Carpendale, S., 2009. Bubble sets: Revealing set relations with isocontours over existing visualizations. *IEEE Transactions on Visualization and Computer Graphics*, *15*(6), pp.1009-1016.

Alper, B., Riche, N., Ramos, G. and Czerwinski, M., 2011. Design study of linesets, a novel set visualization technique. *IEEE transactions on visualization and computer graphics*, *17*(12), pp.2259-2267.

Overlays: LineSets

One smooth line to connect elements of one set with minimal length. This in turn avoids self-crossings.

Dinkla, K., Van Kreveld, M.J., Speckmann, B. and Westenberg, M.A., 2012, June. Kelp diagrams: Point set membership visualization. In *Computer Graphics Forum* (Vol. 31, No. 3pt1, pp. 875-884). Oxford, UK: Blackwell Publishing Ltd.

Overlays: Kelp Diagrams

A graph structure, rather than a single line, to connect elements of a set.

Nested style

Striped style

Overlays: Comparison

LineSets has more bends, and line crossings.

Kelp Diagrams are 1) computationally too slow for interaction;

2) not easy to visually follow line connections (Gestalt Laws of continuity).

Overlays: Comparison

Bubble Sets: color blending introduces new colors. 4-20 sets.

LineSets: not try to route around the elements not belonging to a set. Tens of sets.

Meulemans, W., Riche, N.H., Speckmann, B., Alper, B. and Dwyer, T., 2013. KelpFusion: A hybrid set visualization technique. *IEEE transactions on visualization and computer graphics*, *19*(11), pp.1846-1858.

Overlays: Comparison

LineSets and Kelp Diagrams: complex contours for clusters of elements. KelpFusion: lines + regions

Matrix-based techniques

Matrix-based: OnSet

Sadana, R., Major, T., Dove, A. and Stasko, J., 2014. Onset: A visualization technique for large-scale binary set data. *IEEE transactions on visualization and computer graphics*, *20*(12), pp.1993-2002.

Matrix-based: UpSet

Row: set relation

Column: set

UpSet application: exploring publications from intersecting prospects

Aggregation-based techniques

Too many elements: Aggregate data elements into a single visual element that encodes the frequency.

Aggregation-based: Parallel sets

Show data frequencies rather than individual data points.

Aggregation-based: Radial sets

Radial sets

Alsallakh, B., Aigner, W., Miksch, S. and Hauser, H., 2013. Radial sets: Interactive visual analysis of large overlapping sets. *IEEE Transactions on Visualization and Computer Graphics*, *19*(12), pp.2496-2505.

Recap

Venn and Euler diagrams _E

Recap

Matrix-based

Aggregation-based

Which technique to use?

VS.

Which technique to use?

Task abstraction

Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S. and Rodgers, P., 2014, June. Visualizing sets and set-typed data: State-of-the-art and future challenges. In *Eurographics conference on Visualization (EuroVis)–State of The Art Reports* (pp. 1-21). The Eurographics Association.

Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S. and Rodgers, P., 2016, February. The State-of-the-Art of Set Visualization. In *Computer Graphics Forum* (Vol. 35, No. 1, pp. 234-260).